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TinyML and Efficient Deep Learning

• Optimize the Computation Efficiency 
- Inference: MCUNet for IoT Devices [NeurIPS’20, spotlight]

- Training: Tiny On-Device Transfer Learning (TinyTL) [NeurIPS’20] 

• Optimize the Data Efficiency 
- Differentiable Augmentation for Data-Efficient GAN Training [NeurIPS’20]
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Cloud AI Mobile AI Tiny AI

Challenge: Memory Too Small to Hold DNN

Memory (Activation)

Storage (Weights)

16GB

~TB/PB

4GB

256GB

320kB

1MB13,000x 
smaller

50,000x 
smaller

We need to reduce the peak activation size 
AND the model size to fit a DNN into MCUs.



Existing efficient network only reduces model size  
but NOT activation size!
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TinyML: Bring AI to IoT Devices

MIT researchers have developed a system, 
called MCUNet, that brings machine learning to 
microcontrollers. The advance could enhance the 
function and security of devices connected to the 
Internet of Things (IoT).   ——MIT News

Accuracy

 


Challenging memory resource: 256KB SRAM, 1MB Flash on MCU

Key: co-design the neural architecture, the compiler and inference engine

toy applications large scale

MCUNet

http://tinyml.mit.edu


TinyEngine: Speedup

Million MAC/s ↑

Baseline: ARM CMSIS-NN Code generation Specialized Im2col Op fusion Loop unrolling Tiling

0 64 7052 75 79 82

1.6x faster

Measured on the same STM32 MCU



TinyEngine: Memory Saving

9Measured on the same STM32 MCU



62
56

49
39Baseline (MbV2*+CMSIS)


System-only (MbV2*+TinyEngine)

Model-only (TinyNAS+CMSIS)


Co-design (TinyNAS+TinyEngine)

ImageNet Top1:   35%                    45%                    55%                    65%

* scaled down version

• ImageNet classification on STM32F746 MCU (320kB SRAM, 1MB Flash)


MCUNet: TinyNAS+TinyEngine
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Smaller child networks are 

nested in larger onesTrain once, get many


Redude the marginal design cost

Fit diverse hardware constraints


Once-for-All Network
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Once-for-All Network

9am 2pm 9pm

Train once, get many

Redude the marginal design cost

Fit diverse hardware constraints


Smaller child networks are 

nested in larger ones
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Once-for-All Network
Train only once, generate the entire Pareto curve

Once-for-All, ICLR’20

https://arxiv.org/pdf/1908.09791.pdf


14

To
p-

1 
Im

ag
eN

et
 A

cc
 (%

)

76

77

78

79

80

81

0 50 100 150 200 250 300 350 400

OFA
EfficientNet

76.3

78.8

79.8
79.8

78.7

Google Pixel1 Latency (ms)

80.1 2.6x faster

3.8% higher 

accuracy

Google Pixel1 Latency (ms)

To
p-

1 
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

18 24 30 36 42 48 54 60

OFA
MobileNetV3

75.2

73.3

70.4

67.4

76.4

74.9

73.3

71.4

4% higher 

accuracy

1.5x faster

• Training from scratch cannot achieve the same level of accuracy

Once-for-All Network
Train only once, handle diverse hardware constraints 

Once-for-All, ICLR’20

https://arxiv.org/pdf/1908.09791.pdf
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Samsung S7 Edge Latency (ms)
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Once-for-All, ICLR’20

https://arxiv.org/pdf/1908.09791.pdf
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ImageNet Top-1 Accuracy (%)

STM32F412

(256kB/1MB)

STM32F746

(320kB/1MB)

STM32F765

(512kB/1MB)

STM32H743

(512kB/2MB)

• Specializing models (int4) for different MCUs (SRAM/Flash)


The first to achieve >70% 
ImageNet accuracy on 
commercial MCUs 

MobileNetV2+CMSIS-NN

+17%

Once-for-All Network



Consistently Outperforms Human Baselines  
Turn-key solution for many hardware platforms:  CPU/GPU/DSP/FPGA

Once-for-All Network

• Six first-place finishes in top competitions in efficient AI



AutoML, Neural Architecture Search
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Once-for-All (ours)

EfficientNet

ProxylessNAS
MBNetV3

AmoebaNet

MBNetV2
PNASNet
ShuffleNet
DARTS

IGCV3-D

MobileNetV1 (MBNetV1)

NASNet-A

InceptionV2

DenseNet-121

DenseNet-169

ResNet-50

ResNetXt-50

InceptionV3

DenseNet-264

DPN-92

ResNet-101

Xception

ResNetXt-101

14x less computation

595M MACs

80.0% Top-1

Model Size 

• Once-for-all model (ofa.mit.edu) sets a new state-of-the-art 80% ImageNet top-1 accuracy 
under the mobile vision setting (< 600M MACs).

Consistently outperforms human baselines  
Turn-key solution for co-design

http://ofa.mit.edu


Applications

We focus on large-scale datasets to reflect real-life use cases.


Datasets: 
(1) ImageNet-1000

(2) Wake Words


• Visual: Visual Wake Words

• Audio: Google Speech Commands
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Audio Wake Words (Speech Commands)
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Visual Wake Word Detection

• Detecting whether a person is present in the frame


Demo:





MinkowskiNet: 3.4 FPS

SPVNAS (Ours): 9.1 FPS

Self-driving: a whole trunk of GPU

AR/VR: a whole backpack of computer

 
SPVNAS, ECCV’20


Mobile phone: limited battery 

accuracy ranks 1st on the SemanticKitti leaderboard

TinyML for Point Cloud



3D LiDAR Sensor 3D Point Cloud: 2M points/s

30fps

Liu et al. ICRA’21.TinyML for Driving

Demo:



GAN Compression, CVPR’20

TinyML for GAN

Demo:

https://arxiv.org/pdf/2003.08936.pdf
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TinyML for GANs AnyCost GAN, CVPR’21

Demo:



TinyML for NLP

HAT, ACL’20
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Table 1

Human Life 11023 5000

American Life 36156

US car including 
fuel

126000

Evolved 
Transformer

626155

HAT (Ours) 6000

626,155

126,000

36,156

11,023Human Life 
(Avg. 1 year)

American Life 
(Avg. 1 year)
US Car w/ Fuel 
(Avg. 1 lifetime)

Evolved 
Transformer

HAT (Ours) 52 12041×

0 175K 350K 525K 700K
CO2 Emission (lbs)

Figure 9: The design cost measured in pounds of
CO2 emission. Our framework for searching HAT re-
duces the search cost by four orders of magnitude than
Evolved Transformer (So et al., 2019).

top ones; on the contrary, HAT trains all models
together inside SuperTransformer and sorts their
performance proxy to pick top ones. The superior
performance of HAT proves that the performance
proxy is accurate enough to find good models.

Quantization-Friendly. HAT is orthogonal to
other model compression techniques such as quan-
tization. We apply K-means quantization to HAT
and further reduce the model size. We initialize
centroids uniformly in the range of [min, max] of
each weight matrix and run at most 300 iterations
for each of them. Even without any fine-tuning, 4-
bit quantization can reduce the model size by 25⇥
with negligible BLEU loss compared to the Trans-
former baseline (Table 5). Interestingly, the 8-bit
model even increases the BLEU by 0.1 than the 32-
bit floating-point version, indicating the robustness
of our searched HAT.

5 Related Work
Transformer. Transformer (Vaswani et al., 2017)
has prevailed in sequence modeling. By stacking
identical blocks, the model obtains a large capac-
ity but incurs high latency. Recently, a research
trend is to modify the Transformer to improve the
performance (Chen et al., 2018; Wu et al., 2019b;
Sukhbaatar et al., 2019; Wang et al., 2019). Among
them, Wu et al. (2019b) introduced a convolution-
based module to replace the attention; Wang et al.
(2019) proposed a method for training deep Trans-
formers by propagating multiple layers together in
the encoder. In those architectures, all layers are
still identical without fully leveraging the design
space. Another trend is to apply non- or partially-
autoregressive models to cut down the iteration
number for decoding (Gu et al., 2019; Akoury et al.,
2019; Wei et al., 2019; Gu et al., 2018). Although
reducing latency, they all suffer from low perfor-
mance. Anonymous (2020) investigated mobile

BLEU Model Size Reduction

Transformer Float32 41.2 705MB –
HAT Float32 41.8 227MB 3⇥
HAT 8 bits 41.9 57MB 12⇥
HAT 4 bits 41.1 28MB 25⇥

Table 5: K-means quantization of HAT models on
WMT’14 En-Fr. 4-bit quantization reduces model size
by 25⇥ with only 0.1 BLEU loss than transformer base-
line. 8-bit quantization even increases BLEU by 0.1
than its float version.

settings for NLP tasks and proposed a multi-branch
mobile Transformer. However, it relied on FLOPs
for efficient model design, which is an inaccurate
proxy for hardware latency (Figure 2).

Neural Architecture Search. In the computer
vision community, to obtain efficient models, there
has been an increasing interest in automating
model design with Neural Architecture Search
(NAS) (Zoph and Le, 2017; Zoph et al., 2018;
Pham et al., 2018). Some of them also involved
hardware constraints into optimization such as
MNasNet (Tan et al., 2019), ProxylessNAS (Cai
et al., 2019b) and FBNet (Wu et al., 2019a). To
reduce the high design cost of NAS, supernet based
methods (Guo et al., 2019; Bender et al., 2018) ap-
ply a proxy for sub-network performance and adopt
search algorithms to find good sub-networks. For
NLP tasks, the benefits from the architecture search
have not been fully investigated. Recently, So et al.
(2019) proposed Evolved Transformer to search
for architectures under model size constraints and
surpassed the original Transformer baselines. How-
ever, it suffered from extremely high search costs
(250 GPU years), making it infeasible to special-
ize models for various hardware and tasks. Also,
hardware latency feedback was not taken into con-
siderations for better case-by-case specialization.

6 Conclusion

We propose Hardware-Aware Transformers (HAT)
framework to solve the challenge of efficient Trans-
former model deployment on the various kinds of
hardware platforms. We conduct hardware-aware
neural architecture search in an ample design space
with an efficient weight-shared SuperTransformer,
which consumes four orders of magnitude less cost
than the prior Evolved Transformer and discovers
high-performance low-latency models. We hope
HAT can open up an avenue towards efficient Trans-
formers deployment for real-world applications.
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HAT: Hardware-Aware Transformers, ACL 2020 30

• HAT is orthogonal to general model compression techniques
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[HPCA’21] Hanrui Wang, Zhekai Zhang, Song Han;  “SpAtten: Efficient Sparse Attention Architecture with Cascade Token and Head Pruning” 

• Motivation: Attention layer in natural language processing models 
is the bottleneck for end-to-end performance.


• Main idea: Reduce the redundant computation. 
1. Cascade Token and head pruning: Based on attention distribution, 

we remove unimportant tokens and heads to reduce computation 
and memory access. 

2. Progressive quantization: progressively fetch MSB and LSB to 
reduce average bitwidth. If attention distribution is flat, using MSB 
is sufficient for accuracy.

Attention 
operation is the 

bottleneck 

Cascade token and head pruning
Attention Mechanism

Q

K

V

Q*KT S Soft
max P*VPQuery t

t

t

t
Key

Value

attention_out

t

embedding_len

TinyML for NLP HAT, ACL’20

SpAtten, HPCA’21
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[HPCA’21] Hanrui Wang, Zhekai Zhang, Song Han;  “SpAtten: Efficient Sparse Attention Architecture with Cascade Token and Head Pruning” 

Platform Power 
(W)

Performance 
 (GFLOPS)

Energy Efficiency 
 (GFLOP/J)

Raspberry Pi (ARM) 3.49 0.33 (5,945x) 0.095 (2,529x)
Nvidia Nano (GPU) 2.88 1.58 (1,241x) 0.55 (457x)

Intel Xeon (CPU) 96.1 4.89 (401x) 0.051 (4,888x)
TITAN Xp (GPU) 56.7 10.6 (185x) 0.19 (1,428x)

SpAtten-full (ASIC) 7.96 1962 246

Speedup breakdown of SpAtten over GPU

Platform Power 
(W)

Performance 
 (GFLOPS)

Energy Efficiency 
 (GFLOP/J)

A3 (ASIC) 2.00 221 (1.6x) 269 (1.4x)

MNNFast (ASIC) 0.823 120 (3.0x) 120 (3.2x)

SpAtten-small (ASIC) 0.942 360 382

*SpAtten over general-purpose platforms

SpAtten* over state-of-the-art accelerators

*SpAtten uses effective FLOPs, the pruned operations are considered executed

TinyML for NLP



I3D: 

Latency: 164.3 ms/Video    Something-V1 Acc.: 41.6%

TSM: 

Latency: 17.4 ms/Video    Something-V1 Acc.: 43.4%

Speed-up: 9x

TSM, ICCV 2019TinyML for Video Recognition

https://arxiv.org/pdf/1811.08383.pdf


I3D: 

Throughput: 6.1 video/s    

Something-V1 Acc.: 41.6%

TSM: 

Throughput: 77.4 video/s    

Something-V1 Acc.: 43.4%

12.7x higher 
throughput

TinyML for Video Recognition TSM, ICCV 2019

https://arxiv.org/pdf/1811.08383.pdf


TinyML and Efficient Deep Learning

• Optimize the Computation Efficiency 
- Inference: MCUNet for IoT Devices [NeurIPS’20, spotlight]

- Training: Tiny On-Device Transfer Learning (TinyTL) [NeurIPS’20] 

• Optimize the Data Efficiency 
- Differentiable Augmentation for Data-Efficient GAN Training [NeurIPS’20]



TinyTL: Reduce Memory, not Parameters  
for Efficient On-Device Learning

NeurIPS 2020

MIT    MIT-IBM Watson AI Lab1 2

Song Han1Chuang Gan2 Ligeng Zhu1Han Cai1
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Weight update is Memory-expensive;  
Bias update is Memory-efficient

Fine-tune the full network (Conventional)

fmap in memory fmap not in memory

learnable params fixed params weight bias

 mobile inverted bottleneck blockith

C, R 6C, R 6C, R C, R

1x1 Conv1x1 Conv Depth-wise Conv

ai+1 = aiWi + bi

∂L
∂Wi

= aT
i

∂L
∂ai+1

,
∂L
∂bi

=
∂L

∂ai+1
=

∂L
∂ai+2

WT
i+1

Forward: 

Backward: 

• Updating weights requires storing intermediate activations

• Updating biases does not

37



TinyTL: Lite Residual Learning

fmap in memory fmap not in memory

learnable params fixed params

 mobile inverted bottleneck blockith

6C, R 6C, R

1x1 Conv1x1 Conv Depth-wise Conv

Fine-tune bias only

Lite residual learning

UpsampleDownsample Group Conv 1x1 Conv

C, 0.5R C, 0.5R

• Add lite residual modules (small memory overhead) to increase model capacity 

weight bias

38

• (1/6 channel, 1/2 resolution, 2/3 depth)



TinyTL: Reduce Memory, not Parameters  
for Efficient On-Device Learning

39

Project Page: http://tinyml.mit.edu

User Intelligent Edge Devices

New and Sensitive

Data

…

TinyTL

45

55

65

75

85

95

0 75 150 225 300
Training Memory (MB)

C
ar

s

Typical L3 Cache Size: 16MB



TinyML and Efficient Deep Learning

• Optimize the Computation Efficiency 
- Inference: MCUNet for IoT Devices [NeurIPS’20, spotlight]

- Training: Tiny On-Device Transfer Learning (TinyTL) [NeurIPS’20] 

• Optimize the Data Efficiency 
- Differentiable Augmentation for Data-Efficient GAN Training [NeurIPS’20]



1MIT      2IIIS, Tsinghua University     3Adobe Research     4CMU

Differentiable Augmentation 
for Data-Efficient GAN Training

NeurIPS 2020

Shengyu Zhao1,2 Zhijian Liu1 Ji Lin1 Song Han1Jun-Yan Zhu3,4
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Our Results

worse quality given less training data
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Project Page: http://tinyml.mit.edu

Cloud AI Mobile AI Tiny AI

ResNet MobileNet MCUNet

• Optimize the Computation Efficiency 
- Inference: MCUNet for IoT Devices [NeurIPS’20, spotlight]

- Training: Tiny On-Device Transfer Learning (TinyTL) [NeurIPS’20]


• Optimize the Data Efficiency 
- Differentiable Augmentation for Data-Efficient GAN Training [NeurIPS’20]

Summary: TinyML and Efficient Deep Learning



Hardware for AI and Neural-net

Proposal for DARPA-NVIDIA-SDH Initiative

PI: Song Han


Project 1: ”Efficient Hardware Primitives for Sparse Linear Algebra” 

Pruning techniques [Han’15] show that DNN models can be pruned to very sparse, 
saving the FLOPs by 10x and model size by 8x (FC layer, index included). However, it’s 
challenging for general purpose hardware to take advantage of sparsity. EIE [Han’16] is 
the first hardware accelerator for sparse DNN, it’s efficient but it lacks flexibility. TACO 
[Kjolstad’17] is a flexible compiler for sparse linear algebra on CPU, but it lacks 
accelerator support. Therefore, I plan to work on an specialized accelerator for sparse 
linear algebra. There are two basic operations to be accelerated: union (OR) and join 
(AND). Software implementation need O(n) cycles. I plan to work on O(log(n)) time 
complexity, O(n) area complexity arrays; or O(1) time complexity, O(n^2) space 
complexity arrays. After that, I’d like to implement this architecture in FPGA or ASIC, 
then integrate the HW primitive into TACO. Then, I want to co-design the machine 
learning models that are not only pruned to be sparse, but also with the optimal 
granularity of sparsity that fits the accelerator. Lastly, I’ll demonstrate a few machine 
learning applications accelerated with such sparse primitives: machine translation, 
speech recognition, image classification, and Progressive GAN, which makes real-time 
AI and embedded-AI possible for IoT devices. It can also make cloudAI more energy 
efficient by saving the electric bill and total cost of ownership (TCO).


Potential product impact for NVIDIA: future DLA architectures in Xavier, Orin, etc.


Project 2: “Optimal Number Representation for Efficient Training/Inference” 

“Number representation” is a fundamental problem for efficient machine learning. For 
inference, Linear Quantization [TensorRT] or Kmeans Quantization [Han’16] are two 
extremes of quantization. The former has easy hw implementation but poor 
expressiveness. The latter has inefficient hw implementation (need register lookup 
every time) but flexible expressiveness. For training, Conventional fp16 or fp32 are also 
inefficient, since training DNNs needs more dynamic range and exciting methods need 
careful scaling factor tuning to avoid underflow or overflow [NVIDIA’17]. Given the large 
design space, we are interested in learning to learn the optimal number representation 
for deep learning. The design space include:  
[linear quantization, log quantization, kmeans quantization] x 
[weight, activation, gradient] x  
[training, inference] x [channel number] x [layer number] x [bit width] x [decimal point]  
This is a large design space that’s hard to be explored by human. It should be explored 
by AI. I plan to use machine learning techniques to find the best number representation 
for machine learning. It’s a co-design of number representation together with model 
architecture, trading off hardware efficiency and model accuracy. I’d like to push the 
pareto frontier of such trade-off. 


Potential product impact for NVIDIA: future TensorRT and cuDNN libraries.


HAN Lab Students: Yujun Lin (Arch PhD), Hanrui Wang (Arch PhD), Zhijian Liu (ML PhD)
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